
A Notation for Substitutions and Related Rates

James Taylor

1 Motivation: Problems with Leibniz Notation

1.1 Related Rates - First Derivative

The canonical example of Leibniz notation used for related rates is as follows.
Find the derivative of y with respect to x:

x = f(t)

y = g(t)

dy

dx
=

dy

dt

dt

dx
=

g′(t)

f ′(t)

It is not clear how one could arrive at this result without Leibniz notation.

1.2 Related Rates - Second Derivative

However, if one is not careful, Leibniz notation can produce erroneous results
for second derivatives and higher:

d2y

dx2
=

d2y

(dt)2
(dt)2

(dx)2
=

g′′(t)

f ′(t)2

Which is incorrect. The correct derivation is as follows:

d2y

dx2
=

d
(

dy
dx

)
dx

=
d

dx

g′(t)

f ′(t)
=

(
dt

dx

)(
f ′(t)g′′(t)− g′(t)f ′′(t)

f ′(t)2

)

=
f ′(t)g′′(t)− g′(t)f ′′(t)

f ′(t)3

It is possible to change Leibniz notation for higher derivatives so that it is valid
to manipulate it in the straight-forward manner, however, the changed notation
is extremely unwieldly.1

1See “Extending the Algebraic Manipulability of Differentials” by Jonathan Bartlett and
Asatur Khurshudyan, https://arxiv.org/abs/1801.09553
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1.3 Differential Equation Substitution

And even so, there are still ways to make mistakes even when not using the
higher derivative notation explicitly. Consider the following problem:

d3y

dt3
= f(y) (1)

We will make the substitution

v =
dy

dt
(2)

to reduce the order of the equation, rewriting it as an equation of v in terms of

y. So we need to rewrite d3y
dt3 in terms of v and y. We will start by rewriting

d2y
dt2 .

d2y

dt2
=

dv

dt
=

dy

dt

dv

dy
= v

dv

dy
(3)

Now
d3y

dt3
=

d2v

dt2
=

d

dt

dv

dt
=

d

dt

(
v

dv

dy

)
(4)

=
dv

dt

dv

dy
+ v

d

dt

dv

dy
(5)

Using (3):

=

(
v

dv

dy

)
dv

dy
+ v

d

dt

d

dy
v (6)

= v

(
dv

dy

)2

+ v
d

dy

d

dt
v (7)

= v

(
dv

dy

)2

+ v
d

dy

dv

dt
(8)

Using (3):

= v

(
dv

dy

)2

+ v
d

dy

(
v

dv

dy

)
(9)

= v

(
dv

dy

)2

+ v

((
dv

dy

)2

+ v
d2v

dy2

)
(10)

= 2v

(
dv

dy

)2

+ v2
d2v

dy2
(11)

This result is incorrect. The correct expression is

v

(
dv

dy

)2

+ v2
d2v

dy2
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Did you see the mistake? It occured in (7) when d
dt

d
dy was switched around.

One may say that incorrect results will not be reached if such invalid manip-
ulations are avoided, but the notation encourages such manipulations. Plus,
the derivation above can hardly be described as readable. Writing out so many
fractions becomes quite tedious. For this reason, an alternative is desired.

I do not mean to imply that Leibniz notation is “wrong”, merely that it is
easy to make mistakes without careful thought.

2 A functional alternative

The lagrange notation for differentiation, f ′(x), only works as an operator on
functions. So we need a way to get functions relating different variables in order
to do related rates. Suppose we have a relation between two variables, y and x,

y = f(x)

then the notation yx (the function which returns y given the value of x) is the
function f . So yx = f . We also have

yx = y|x=I

where I is the identity function. It is worth clearing up some common confusions.
First, the following method for defining a function

g(x) = x2

is in fact shorthand for the following:

g(x) = x2 ∀x

There is always an implicit ∀x. So x is not a particular value. But x is also
not a true, independent (free) variable, but is instead a “dummy” or “bound”
variable, a meaningless letter we use so that we can define a function in terms
of an algebraic expression. We could define the function using a different letter,

g(a) = a2 ∀a

which would define the same function. So the function is not inherently a
function of x. We could also dispense with variables and simply define the
function directly as

g = I2

where I is the identity function.

3 Identities

1. In this notation system, we will use f〈x〉 instead of f(x) to make the
difference between function evaluation and multiplication clear. We will
also extend evaluation to work with function composition:

f〈g〉 = f ◦ g
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2. If yx = f then xy = f−1. Or more succinctly,

y−1x = xy

Note that this is only strictly accurate if yx is an injective function. The
validity of this notation for non-injective functions will be discussed later.

3. Inverse function identity:
yx〈xy〉 = I

4. Changing the variable:
yx〈xt〉 = yt

5. Composition with the identity function:

f〈I〉 = f

6. The derivative of y with respect to x is y′x. This is equivalent to

dy

dx

∣∣∣∣
x=I

7. The derivative of the inverse:

y′x =
(
x−1y

)′
=

1

x′y〈x−1y 〉
=

1

x′y〈yx〉

8. The chain rule:
f〈g〉′ = g′f ′〈g〉

4 Applications

4.1 Related Rates - First Derivative

Let’s start with the canonical related rates problem:

x = f(t)

y = g(t)

y′x = yt〈tx〉′ = t′xy
′
t〈tx〉 =

y′t〈tx〉
x′t〈tx〉

(12)

Making it a function of t by composition with xt,

y′x〈xt〉 =
y′t
x′t

=
g′

f ′
(13)

This is slightly longer, and more alien, but we will make up for it in more
advanced problems.
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4.2 Related Rates - Second Derivative, method 1

Let’s find the second derivative of y with respect to x. Two methods will be
demonstrated. First, by differentiating (12) and then making it into a function
of t:

y′′x =

(
y′t〈tx〉
x′t〈tx〉

)′
=

(
g′〈tx〉
f ′〈tx〉

)′
= t′x

(
f ′g′′− f ′′g′

(f ′)
2

)
〈tx〉

Notice the trick used of composition of the large function in parentheses by tx
instead of repeating tx inside each f and g. This trick can be used throughout
calculus when not using variables.

y′′x =
1

x′t〈tx〉

(
f ′g′′− f ′′g′

(f ′)
2

)
〈tx〉 =

(
f ′g′′− f ′′g′

(f ′)
3

)
〈tx〉

Making it a function of t is easily seen by inspection, but I will write it out:

y′′x〈xt〉 =
f ′g′′− f ′′g′

(f ′)
3

4.3 Related Rates - Second Derivative, method 2

Now we will differentiate (13) to directly get the second derivative as a function
of t:

(y′x〈xt〉)
′

=

(
g′

f ′

)′
x′ty
′′
x〈xt〉 =

f ′g′′− f ′′g′

(f ′)
2

y′′x〈xt〉 =
f ′g′′− f ′′g′

(f ′)
3

4.4 Differential Equation Substitution

Now let’s redo the differential equation problem:

y′′′t = f〈yt〉

vt = y′t (14)

y′′t = v′t = vy〈yt〉′ = y′tv
′
y〈yt〉 = vtv

′
y〈yt〉 (15)

y′′′t =
(
vtv
′
y〈yt〉

)′
= v′tv

′
y〈yt〉+ vty

′
tv
′′
y 〈yt〉

Substituting (14) and (15):

y′′′t =
(
vtv
′
y〈yt〉

)
v′y〈yt〉+ v2t v

′′
y 〈yt〉

y′′′t = vt
(
v′y〈yt〉

)2
+ v2t v

′′
y 〈yt〉
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After substituting this into the differential equation, we would change everything
to be a function of y using ty,

y′′′t 〈ty〉 = vy
(
v′y
)2

+ v2yv
′′
y (16)

This is the correct equation. This derivation is much more compact than the
derivation using Leibniz notation. As an aside, our differential equation would
end up being

vy
(
v′y
)2

+ v2yv
′′
y = f

5 Multiple variables

This notation could also work for multivariate functions. We need only augment
the identity function and lagrange notation for the derivative. The function In
is the function which returns the nth argument unchanged. That is,

In〈x1, x2, . . . , xn, xn+1, . . . , xm〉 = xn ∀x1 . . . xm

We define ∂nf to be the partial derivative of the multivariate function f with
respect to the nth argument. So we have

∂nIk = 0 n 6= k

∂nIn = 1

For a function, f , of a single variable, we have

∂1f = f ′

If we have
x = f〈u, v〉

y = g〈u, v〉

we can extend the notation (I think...). For instance, yxu is the function which
gives y in terms of x and u. The derivative of y with respect to x is any of the
following

∂1yxu

∂1yxv

∂2yux

∂2yvx

We also have the following messy generalization for changing a single variable:

yx1x2...xn...xm
〈I1, I2, . . . , In−1, (xn)x1x2...v...xm

, In+1, . . . , Im〉 = yx1x2...v...xm

where v is another variable involved in the relational map.
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Here’s an example of this:

xvy〈I1, yvw〉 = xvw

or
xvy〈t1, yvw〈t1, t2〉〉 = xvw〈t1, t2〉 ∀t1, t2

We also need to generalize the inverse. The operator Ni (“iNverse”) will
give the inverse of the function with respect to the ith variable. So

f〈N1f〈x, y〉, y〉 = x

f〈x,N2f〈x, y〉〉 = y

In a variable mapping function, this operator will swap the leading variable with
the ith variable:

Niyx1x2...xn
= xix1x2...xi−1yxi+1...xn

For example,
N1vxy = xvy

N2vxy = yxv

6 Non-injective Functions and Formalization

One way to deal with non-injective functions is to define yx not as a function, but
as a new type of object, an “omnipotent” function which is aware of the current
value of y when making small perturbations to x. More formally, yx is restricted
to a certain branch of the function, and is not ready to be used until we take its
derivative, y′x and rewrite it in terms of the necessary variables. So it is an object
which will be in a non-evaluatable state until transformations are performed on
it that enable an unambiguous evaluation. This should enable formally correct
calculations of derivatives for such relations as x2 + y2 = r2. I am not skilled
enough to make this any more formal, so this hand-wavey expanation will have to
do. Demonstrating an isomorphism between this notation and Leibniz notation
should be sufficient to prove it yields correct results at the end.

7 An Informal Derivation of the Jacobian

We wish to rewrite the integral∫ b

a

∫ q〈y〉

p〈y〉
f〈x, y〉dx dy

using the variables v, w in the relation

x = g〈v, w〉

y = h〈v, w〉
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In contrast to how a change of variables is typically done with the Leibniz
notation for integration, we will use the identity∫ b

a

f〈x〉dx =

∫ g−1〈b〉

g−1〈a〉
g′〈x〉f〈g〈x〉〉dx

Notice that we do not necessarily change the variable of integration. In this
case, x is just being used as a dummy (binding) variable rather than a free vari-
able as is customary in Leibniz notation. However, to keep things semantically
meaningful, we will use x̃, ỹ, ṽ, w̃ as the binding variables. These are not the
same as the x, y, v, w variables, but we give them a similar name to keep the
semantic meaning of the integral straight while performing the transformations.
We will also cast f as a variable rather than a function to make things more
compact. So we have ∫ b

a

∫ q〈ỹ〉

p〈ỹ〉
fxy〈x̃, ỹ〉dx̃dỹ

First we change x̃ to ṽ:∫ b

a

∫ vxy〈q〈ỹ〉,ỹ〉

vxy〈p〈ỹ〉,ỹ〉
∂1xvy〈ṽ, ỹ〉fxy〈xvy〈ṽ, ỹ〉, ỹ〉dṽ dỹ

∫ b

a

∫ vxy〈q〈ỹ〉,ỹ〉

vxy〈p〈ỹ〉,ỹ〉
∂1xvy〈ṽ, ỹ〉fvy〈ṽ, ỹ〉dṽ dỹ

Now we change ỹ to w̃:

wvy〈ṽ, b〉∫
wvy〈ṽ, a〉

∂2yvw〈ṽ, w̃〉
vxy〈q〈yvw〈ṽ, w̃〉〉, yvw〈ṽ, w̃〉〉∫

vxy〈p〈yvw〈ṽ, w̃〉〉, yvw〈ṽ, w̃〉〉

∂1xvy〈ṽ, yvw〈ṽ, w̃〉〉fvy〈ṽ, yvw〈ṽ, w̃〉〉dṽ dw̃

One may immediately object that the integration variables are in the integration
bounds in an invalid manner. Specifically, ṽ is in the bounds of the outermost
integral even though ṽ is used as the integration variable in the innermost inte-
gral. And even worse, ṽ is in the integration bounds of the very integral which
uses it as an integration variable. This will be addressed later.

∫ wvy〈ṽ,b〉

wvy〈ṽ,a〉

vxy〈. . .〉∫
vxy〈. . .〉

∂2yvw〈ṽ, w̃〉∂1xvy〈ṽ, yvw〈ṽ, w̃〉〉fvw〈ṽ, w̃〉dṽ dw̃

For compactness, let ... be shorthand for ṽ, w̃∫∫
D

∂2yvw〈...〉∂1xvy〈ṽ, yvw〈...〉〉fvw〈...〉dṽdw̃

We want ∂1xvy〈ṽ, yvw〈...〉〉 to be rewritten with functions in terms of v, w di-
rectly, rather than as a composition which makes it in terms of v, w. We will
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need to use the equivalent identitites for
(
f−1

)′
(x) but generalized for partial

derivatives. We will derive the necessary identities on the spot:

xvy〈ṽ, yvw〈ṽ, w̃〉〉 = xvw〈ṽ, w̃〉

Differentiating with respect to ṽ,

∂1xvy〈ṽ, yvw〈...〉〉+ ∂1yvw〈...〉∂2xvy〈ṽ, yvw〈...〉〉 = ∂1xvw〈...〉

∂1xvy〈ṽ, yvw〈...〉〉 = ∂1xvw〈...〉− ∂1yvw〈...〉∂2xvy〈ṽ, yvw〈...〉〉

∫∫
D

∂2yvw〈...〉 [∂1xvw〈...〉− ∂1yvw〈...〉∂2xvy〈ṽ, yvw〈...〉〉] fvw〈...〉dṽdw̃

We still have a pesky ∂2xvy〈ṽ, yvw〈...〉〉, but this one is not a “mixed” partial
(partial of first argument, with inverse of second argument inside), since it is the
partial of the second argument, with the inverse of the second argument inside.
For this reason, we expect that we can truly get rid of it (and that we won’t
just get a similar mixed partial identity that brings us back to square one).

xvy〈ṽ, yvw〈ṽ, w̃〉〉 = xvw〈ṽ, w̃〉

Differentiating with respect to w̃,

∂2yvw〈...〉∂2xvy〈ṽ, yvw〈...〉〉 = ∂2xvw〈...〉

∂2xvy〈ṽ, yvw〈...〉〉 =
∂2xvw〈...〉
∂2yvw〈...〉

Substituting,∫∫
D

∂2yvw〈...〉
[
∂1xvw〈...〉− ∂1yvw〈...〉

∂2xvw〈...〉
∂2yvw〈...〉

]
fvw〈...〉dṽdw̃

∫∫
D

[∂2yvw∂1xvw − ∂1yvw∂2xvw] 〈...〉fvw〈...〉dṽdw̃

∫∫
D

fvw〈...〉
∣∣∣∣∂1xvw ∂1yvw
∂2xvw ∂2yvw

∣∣∣∣ 〈...〉dṽdw̃

With the bounds,

wvy〈ṽ, b〉∫
wvy〈ṽ, a〉

vxy〈q〈yvw〈ṽ, w̃〉〉, yvw〈ṽ, w̃〉〉∫
vxy〈p〈yvw〈ṽ, w̃〉〉, yvw〈ṽ, w̃〉〉

fvw〈ṽ, w̃〉
∣∣∣∣∂1xvw ∂1yvw
∂2xvw ∂2yvw

∣∣∣∣ 〈ṽ, w̃〉dṽ dw̃
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7.1 The bounds issue

Note: Upon further experimentation, I have found that the method-
ology outlined in this section is still not sufficient to formalize the
bounds. It was not able to produce consistent/clear results for inte-
grating over a circular disk. I’m optimistic more investigation into
this problem could alleviate this; for now, consider this section a
prototype/proof of concept.

The question is how can these bounds be interpreted? One way to interpret
them is to observe that ∫ b

a

f〈x〉dx

is equivalent to ∫ x=b

x=a

f〈x〉dx

So that if we have ∫ b〈x〉

a〈x〉
f〈x〉dx

then the bounds must satisfy ∫ x=b〈x〉

x=a〈x〉
f〈x〉dx

For example, ∫ 2x+5

0

f〈x〉dx =

∫ x=2x+5

x=0

f〈x〉dx

x = 2x + 5 =⇒ x = −5∫ 2x+5

0

f〈x〉dx =

∫ −5
0

f〈x〉dx

If there are multiple solutions, then all combinations are put into different inte-
grals which get added up, ∫ x3

0

f〈x〉dx

x = x3 =⇒ x = 0 or x = 1 or x = −1∫ x3

0

f〈x〉dx =

∫ 0

0

f〈x〉dx+

∫ 1

0

f〈x〉dx+

∫ −1
0

f〈x〉dx

Note that, ∫ x

0

f〈x〉dx

is undefined, because x = x has infinitely many solutions.
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An informal justification for the interpretation given can be sketched out.
Imagine that a computer were to evaluate the integral∫ b〈x〉

a〈x〉
f〈x〉dx

The computer would sweep through values in the range a〈x〉, b〈x〉, evaluating the
function at those values and adding them up. But through which range to sweep
is not clear since a〈x〉 and b〈x〉 aren’t numbers. Instead, the sweeping can be
done with a separate parameter, 0 < t < 1. The value of x in terms of t would
then be a〈x〉+ t(b〈x〉− a〈x〉). This isn’t a number either, but for particular
values of t, such as 0.5, the computer would then evaluate the function as such:

f〈x〉|x=a〈x〉+0.5(b〈x〉−a〈x〉)

and the value of x would be solved at evaluation time. Since this might have
multiple solutions, the integration could be done on each branch of the function
(of t),

p〈t〉 = [a〈I〉+ t(b〈I〉− a〈I〉)− I]−1〈0〉
separately. That is, the computer might choose to be consistent with which
solution it chooses. If the equation became x2 = t, then it would always choose
x =
√
t for one of the integrals, and x = −

√
t for the other.

In fact, the computer would not have to be consistent, since it is simply
adding things up. It could choose the branch randomly. But it would have to
make the opposite choices in the second integration. Let’s test this interpreta-
tion on an example to see if it gives consistent results. Switching the order of
integration (for nice functions) should make no difference under this interpreta-
tion. ∫ x

5

∫ y

0

y2 dxdy =

∫ x−5

0

∫ y+5

0

(y + 5)2 dxdy

=

∫ 1

0

∫ x=(x−5)y+5

x=0

(x− 5) ((x− 5)y + 5)
2

dxdy

x = (x− 5)y + 5 =⇒ x =
−5y + 5

1− y∫ x

5

∫ y

0

y2 dxdy =

∫ 1

0

∫ −5y+5
1−y

0

(x− 5) ((x− 5)y + 5)
2

dxdy = −156.25

Now let’s switch the order and see if we get the same answer,∫ y

0

∫ x

5

y2 dy dx =

∫ 1

0

∫ yx

5

yy2 dy dx =

∫ 1

0

∫ y=yx

y=5

y3 dy dx

y = yx, x 6= 1 =⇒ y = 0

x 6= 1 as long as we exclude that single point from the integration, which won’t
change the result.∫ y

0

∫ x

5

y2 dy dx =

∫ 1

0

∫ 0

5

y3 dy dx = −156.25
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8 Other remarks

We can perform calculus entirely without variables2:

f = I3

f ′ = 3I2

f =

∫ I

0

3I2

f =

∫ I

0

∫ I

0

6I

The indefinite integral:

F = C +

∫ I

f

where C is a constant function.
Here is an example of calculating a derivative for x2 + y2 = r2. Let us

calculate the derivative of x with respect to y:

x2
y + I2 = r2

2xyx
′
y + 2I = 0

x′y = − I

xy

So if y = 3 and x = 4 (implying r = 5), then

x′y〈3〉 = −3

4

Since this relation is non-injective, this isn’t simply a function being evaluated
at a value of 3. There’s more magic going on in the background.

2For a larger exposition on variableless calculus, see “Alternative mathematical nota-
tion and its applications in calculus” by Jakub Marian: https://jakubmarian.com/data/

bachelor_thesis.pdf
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