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1 Quadratic Background

The standard method to derive the quadratic formula is completing the square:

ax2 + bx+ c = 0

x2 +
b

a
x+

c

a
= 0

x2 +
b

a
x+

(
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0

(
x+

b

2a

)2

−
(
b

2a

)2

+
c

a
= 0

At this stage, a square root can be taken to get the full formula. Note that this
shows how every quadratic can be written as a series of transformations on the
function x2. We can also multiply by a to ensure we are writing the original
quadratic:

ax2 + bx+ c = a

(
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)2

− a
(
b
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)2

+ c

Recall that − b
2a is the center of the quadratic, the x value where the minimum

is. The addition of b
2a therefore represents the off-centering of the quadratic.

We can recenter it by making the substitution (x− b
2a )→ x:
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or, showing it happening in the original
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+ c
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This is symmetric because there is no x term, which means that we have
P (−x) = P (x), meaning the quadratic is centered about the y-axis.

2 Depressed cubic

However, it is not possible to write every cubic as transformations of x3, so we
cannot simply complete the cube. However, we can center it to simplify it and
remove the x2 term. The center of a cubic is − b

3a (if one did not know this, one
could write it as a variable δ, and then solve for δ by setting the coefficient on
x2 to 0):

x = x′ − b

3a
(1)

a

(
x′ − b

3a

)3

+ b

(
x′ − b

3a

)2

+ c

(
x′ − b

3a

)
+ d = 0

ax′3 +

(
c− b2

3a

)
x′ +

2b3 − 9abc

27a2
+ d = 0

Dividing both sides by a:

x′3 +

(
3ac− b2

3a2

)
x′ +

2b3 − 9abc

27a3
+
d

a
= 0 (2)

This is a depressed cubic. Since every cubic can be written this way, we will
now forget general cubics and instead attempt to solve the simpler

x3 + cx+ d = 0

While not symmetric about the y-axis, this is centered because for

P (x) = x3 + cx

we have
P (−x) = −P (x)

The d merely moves this centered cubic up or down.

We can do even better than this. It turns out that all cubics can be written as
transformations of these three primitive cubics:

x3 + x

x3
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x3 − x

The x3 function will appear flat at the center. The x3+x function will be sloped
upwards at the center. The x3 − x function will be sloped downwards and have
a maximum on the left and a minimum on the right. We will concentrate on
this last one since it is the only one where all three roots can be distinct real
numbers.

Let’s use transformations to get rid of the variable c:

x3 + cx+ d = 0

We’ve already used up shift transformations to remove b, but we can still scale
the x and y axes:

x = λx′ (3)

And multiplying both sides by τ ,

τλ3x′3 + τλcx′ + τd = 0

τλ3 = 1

τλc = −1

Dividing the first by the second and rearranging,

λ2 = −c

λ = ±
√
−c

The positive variant will be chosen:

λ =
√
−c

τ =
−1

cλ
= − 1√

−c3

So

x′3 − x′ − d√
−c3

= 0 (4)

and our transformation was
x =

(√
−c
)
x′ (5)

This doesn’t work for c = 0, and requires imaginary numbers for c > 0. This
reflects that these other two cases are transformations of the other two primitive
cubics.
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So now we will work with the very depressed cubic

x3 − x+ d = 0

3 Root functions

Since we don’t know the cubic formula yet, we will represent its various forms
with functions so we can deduce what properties it must have.

The general cubic formula, fn(a, b, c, d), where n = 1, 2, 3 picks between one of
three roots, of undecided ordering, satisfies:

afn(a, b, c, d)3 + bfn(a, b, c, d)2 + cfn(a, b, c, d) + d = 0

The depressed cubic formula, gn(c, d) = fn(1, 0, c, d),

gn(c, d)3 + cgn(c, d) + d = 0

The very depressed cubic formula, f3n(d) = fn(1, 0,−1, d):

f3n(d)3 − f3n(d) + d = 0

We write these as f3n to distinguish them from the f1n function for x3 + x and
the f2n for x3.

The following branch cuts will be chosen. When all roots are real and distinct,
we will order the roots as,

f31(d) < f32(d) < f33(d)

3.1 Transformation identities

Suppose we are modeling a physical system with quadratics or cubics. If we
change the units we use to measure things, either changing the units in only the
x-axis, only the y-axis, or in both, that is equivalent to scaling the axes. If we
scale the x-axis by λ, then the roots should also scale by λ:

ax3 + bx2 + cx+ d = 0 =⇒ x = fn(a, b, c, d)

x = λx′

a(λx′)3 + b(λx′)2 + c(λx′) + d = aλ3x′3 + bλ2x′2 + cλx′ + d = 0

=⇒ x′ = fn(λ3a, λ2b, λc, d)
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The x-scaling transform is therefore:

1

λ
fn(a, b, c, d) = fn(λ3a, λ2b, λc, d)

Since scaling the y-axis doesn’t change the roots, we have y-scale invariance:

fn(λa, λb, λc, λd) = fn(a, b, c, d)

Combining these gives us a variation on the x-scaling identity:

λfn(a, b, c, d) = fn(a, λb, λ2c, λ3d)

Setting a = 1, b = 0 shows that this one also applies to the depressed root
function:

λgn(c, d) = gn(λ2c, λ3d) (6)

We can use similar logic to get a shift transform, but we won’t be using it:

δ + fn(a, b, c, d) = fn(a, b− 3aδ, c− 2bδ + 3aδ2, d− cδ + bδ2 − aδ3)

3.2 The general cubic formula in terms of the depressed
formulas

Now we will write the general cubic formula fn(a, b, c, d) in terms of the de-
pressed varieties.

ax3 + bx2 + cx+ d = 0

x = fn(a, b, c, d)

According to the shift transformation (equation 1) we used to get the depressed
cubic,

x = x′ − b

3a

and (by equation 2),

x′ = gm

(
3ac− b2

3a2
,

2b3 − 9abc

27a3
+
d

a

)
Therefore,

fn(a, b, c, d) = − b

3a
+ gm

(
3ac− b2

3a2
,

2b3 − 9abc

27a3
+
d

a

)
We are not worrying about the ordering/correspondence of the roots. Using the
x-scale transform (equation 6) to pull out a factor of 1

3a ,
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fn(a, b, c, d) =
−b+ gm

(
9ac− 3b2, 2b3 − 9abc+ 27a2d

)
3a

(7)

Now we will write g in terms of the very depressed root function f3n.

x3 + cx+ d = 0

x = gn(c, d)

Recall equations 4 and 5,

x′3 − x′ − d√
−c3

= 0

x =
(√
−c
)
x′

x′ = f3m

(
− d√
−c3

)
gn(c, d) =

√
−cf3m

(
− d√
−c3

)
(8)

Combining equations 7 and 8,

fn(a, b, c, d) =
−b+

√
3b2 − 9acf3m

(
2b3−9abc+27a2d
(
√
3b2−9ac)3

)
3a

(9)

This is valid for b2 − 3ac > 0

4 Related root identities

In investigating the problem of solving the cubic equation, one of the first things
to do is examine the special cases. For instance, one special case is when the
cubic can be written as transformations of x3. In this case, it can be solved by
completing the cube. Another special case is when

b

a
=
d

c
= λ

in which case the cubic can be written as

ax2(x+ λ) + c(x+ λ) = 0

And solved with the quadratic formula. b
c = a

d is similar. The case of d = 0
is another special case. However, all of these simple cases can be derived from
equation 7 and/or tell us nothing useful about f3n.
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One special case is when two of the roots are equal:

(x− r1)(x− r2)(x− r2) = x3 − x+ d = 0

For the very depressed cubic, this means that one of the maxima is touching
the x-axis. We can solve for r1 = ± 1√

3
and r2 = ∓ 2√

3
. Since we can also write

d in terms of r1 and r2. For the negative r1 case, we learn

f31

(
2√
33

)
= − 1√

3

f32

(
2√
33

)
= f33

(
2√
33

)
=

2√
3

This is better, but still no help. We were just able to solve the special case where
r3 = r2. What about the special case where r3 = 2r2? Or more generally, where
r3 = kr2?

(x− r1)(x− r2)(x− kr2) = x3 − x+ d = 0

This doesn’t seem like it would help, since we are surely just replacing the
unknown quantity r3 with the equally unknown k, but it does1. First, ex-
pand,

x3 − (r1 + (k + 1)r2)x2 +
(
(k + 1)r1r2 + kr22

)
x− kr1r22 = x3 − x+ d = 0

Since these are the roots of a very depressed cubic, they must be such that the
coefficient on the quadratic term is 0 and on the linear term is -1:

r1 + (k + 1)r2 = 0 =⇒ r1 = −(k + 1)r2

(k + 1)r1r2 + kr22 = −1

−(k + 1)2r22 + kr22 = −1[
k − (k + 1)2

]
r22 = −1

1In most cases where you try something like this on a cubic, in the process of solving for
the necessary free parameters, you will be given back the cubic you are trying to solve, or one
equally or more difficult. For instance, if you had the clever idea to try writing cubics as the
difference of two squared quadratics,

(ax2 + b1x + c2)2 − (ax2 + b2x + c2)2 = x3 − x + d = 0

or some similar idea, then in order to determine the free parameters a, b1, b2, c1, c2, you will
be required to solve not a nice cube equation p3 + d = 0, but instead either something that
looks like p3 + p + d = 0, or even worse, a sixth degree polynomial.

However, this doesn’t appear to happen with this trick, at least not fully.
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r2 =

√
1

(k + 1)2 − k
=

1√
k2 + k + 1

r1 = −(k + 1)r2 =
−(k + 1)√
k2 + k + 1

r3 = kr2 =
k√

k2 + k + 1

d = −kr1r22 = −k
(
−(k + 1)√
k2 + k + 1

)(
1√

k2 + k + 1

)2

=
k2 + k

(
√
k2 + k + 1)3

If k > 1, then r1 < r2 < r3, so

f31

(
k2 + k

(
√
k2 + k + 1)3

)
=
−(k + 1)√
k2 + k + 1

f32

(
k2 + k

(
√
k2 + k + 1)3

)
=

1√
k2 + k + 1

f33

(
k2 + k

(
√
k2 + k + 1)3

)
=

k√
k2 + k + 1

Additionally, k > 1 implies 0 < d < 2√
33

.

Now, we cannot simply solve for k in terms of d to get the formula. If we tried
that, we would have to solve a sextic (sixth degree polynomial). Instead, we
are going to try to construct, or at the very least guess, the function f32(d)
necessary to transform the expression

d =
k2 + k

(
√
k2 + k + 1)3

into

f32(d) =
1√

k2 + k + 1

The first idea is to take a cube root on d so the denominators match. But
this gives us a cube root at the top which encloses the numerator, preventing
further changes to it. Our only other option is to square d, make necessary
changes to the numerator, and then take a square root and cube root later to
fix the denominator.

d2 =
(k2 + k)2

(k2 + k + 1)3
=

k4 + 2k3 + k2

k6 + 3k5 + 6k4 + 7k3 + 6k2 + 3k + 1
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We can make changes to the numerator by adding constants, which will add
multiples of the denominator to the numerator. Adding d itself probably won’t
help, since d has a square root in its denominator, which would mean a square
root gets added to the numerator. However, instead of adding multiples of
the large sextic to the quartic, we will want to do it the other way around
for simplicity, so that multiples of the quartic get added to the sextic in the
numerator:

1 + λd2 =
(k6 + 3k5 + 6k4 + 7k3 + 6k2 + 3k + 1) + λ(k4 + 2k3 + k2)

k6 + 3k5 + 6k4 + 7k3 + 6k2 + 3k + 1

1 + λd2 =
k6 + 3k5 + (6 + λ)k4 + (7 + 2λ)k3 + (6 + λ)k2 + 3k + 1

(k2 + k + 1)3

Now we want to use our free parameter λ to make the sextic on top into either a
perfect cube of a quadratic or a perfect square of a cubic, so that we can take the
cube root or square root, respectively. We hope that there will be two or more
solutions to λ, so that after taking the root, we can create further cancellations
on the numerator.

It turns out there is no possible lambda that can make it into a perfect cube.
So we will hope it is possible to make it into a perfect square:

k6 + 3k5 + (6 + λ)k4 + (7 + 2λ)k3 + (6 + λ)k2 + 3k + 1

= (k3 + bk2 + ck + e)2

= k6 + 2bk5 + (b2 + 2c)k4 + (2e+ 2bc)k3 + (c2 + 2be)k2 + 2cek + e2

# Equation

1 2b = 3

2 b2 + 2c = 6 + λ

3 2e+ 2bc = 7 + 2λ

4 c2 + 2be = 6 + λ

5 2ce = 3

6 e2 = 1

This system is overdetermined, so we need to get lucky. Equations 1, 5, and
6 will be used to solve for b, c, and e. Equation 2 will be used to solve for λ.
Then equations 3 and 4 must be checked.

b =
3

2

2ce = 3 =⇒ 2ce2 = 3e =⇒ 2c = 3e =⇒ c =
3

2
e
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e2 = 1

e = 1 e = −1

c =
3

2

Equation 2:

λ = b2 + 2c− 6

λ =
9

4
− 3

λ = −3

4

Check equation 3:

2e+ 2bc = 7 + 2λ

2 + 2

(
3

2

)(
3

2

)
?
= 7− 2

(
3

4

)
9

2
+

3

2

?
= 5

6 = 5 7

c = −3

2

Equation 2:

λ = b2 + 2c− 6

λ =
9

4
− 9

λ = −27

4

Check equation 3:

2e+ 2bc = 7 + 2λ

−2 + 2

(
3

2

)(
−3

2

)
?
= 7− 2

(
27

4

)
−9

2
+

27

2

?
= 9

9 = 9 3

Check equation 4:

c2 + 2be = 6 + λ

9

4
− 3 = 6− 27

4

36

4
= 9 3

The required parameters are

b =
3

2
, c = −3

2
, e = −1, λ = −27

4

We therefore have√
1− 27

4
d2 =

√
(k3 + 3

2k
2 − 3

2k − 1)2

(k2 + k + 1)3
=
|k3 + 3

2k
2 − 3

2k − 1|
(
√
k2 + k + 1)3

For k > 1, the numerator is always positive, so we can drop the absolute value.
Recall that

d =
k2 + k

(
√
k2 + k + 1)3
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The only option now is to add multiples of d to the equation to make the
numerator into a perfect cube.

√
1− 27

4
d2 + τd =

(k3 + 3
2k

2 − 3
2k − 1) + τ(k2 + k)

(
√
k2 + k + 1)3√

1− 27

4
d2 + τd =

k3 + ( 3
2 + τ)k2 + (− 3

2 + τ)k − 1

(
√
k2 + k + 1)3

=
(k + β)3

(
√
k2 + k + 1)3

=
k3 + 3βk2 + 3β2k + β3

(
√
k2 + k + 1)3

3β =
3

2
+ τ

3β2 = −3

2
+ τ

β3 = −1

Multiplying the first two equations together:

9β3 = −9

4
+ τ2

−9 = −9

4
+ τ2

τ = ±
√

9− 36

4
= ±

√
−27

4
= ±3i

√
3

2

β =
1

2
+
τ

3
=

1± i
√

3

2

This is negative one times a root of unity, so the system of equations is consis-
tent.

√
1− 27

4
d2 ± 3i

√
3

2
d =

(
k + 1±i

√
3

2

)3
(
√
k2 + k + 1)3

p =
3

√√
1− 27

4
d2 +

3i
√

3

2
d =

k + 1+i
√
3

2√
k2 + k + 1

−n =
3

√√
1− 27

4
d2 − 3i

√
3

2
d =

k + 1−i
√
3

2√
k2 + k + 1

(variables p and n added for later).

11



Technically we should put undetermined roots of unity in front of the cube roots,
but let’s ignore that and hope it works. Subtracting the second from the first
gives

3

√√
1− 27

4
d2 +

3i
√

3

2
d− 3

√√
1− 27

4
d2 − 3i

√
3

2
d =

i
√

3√
k2 + k + 1

3

√√
1− 27

4 d
2 + 3i

√
3

2 d+ 3

√
−
√

1− 27
4 d

2 + 3i
√
3

2 d

i
√

3
=

1√
k2 + k + 1

=
p+ n

i
√

3

Note 1
i3 = i.

f32?(d) =
3

√
−d

2
+

√
d2

4
− 1

27
+

3

√
−d

2
−
√
d2

4
− 1

27
(10)

Here it is. The only uncertain thing here is whether our branch choices made
sense and whether this indeed corresponds to the second branch.

Now let’s add p and n in different ways to get the other branches. We know

p− n =
2k + 1√
k2 + k + 1

p+ n

i
√

3
=

1√
k2 + k + 1

So
p− n− p+n

i
√
3

2
=

k√
k2 + k + 1

f33?(d) =
(1− 1

i
√
3
)p+ (−1− 1

i
√
3
)n

2

f33?(d) =
(−1 + i

√
3)p+ (−1− i

√
3)n

2i
√

3

f33?(d) = u2
3

√
−d

2
+

√
d2

4
− 1

27
+ u3

3

√
−d

2
−
√
d2

4
− 1

27

where u2 = −1+i
√
3

2 , u3 = −1−i
√
3

2 (roots of unity)

Similar steps show that
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f31?(d) = u3
3

√
−d

2
+

√
d2

4
− 1

27
+ u2

3

√
−d

2
−
√
d2

4
− 1

27

The branches do not correspond properly, however. This is likely related to
the fact that we dropped the roots of unity during the derivation and used the
property − 3

√
x = 3

√
−x which is invalid for the principal cube root definition

3
√
|z| exp(i arg(z)) = 3

√
|z| exp

(
i arg(z)3

)
The depressed root function is

gn(c, d) =
√
−cf3m

(
− d√
−c3

)

gn(c, d) =
3

√
−d

2
+

√
d2

4
− c3

27
+

3

√
−d

2
−
√
d2

4
− c3

27

From here, the general cubic formula can be written, but it is ugly.

We can figure out how equation 10 works by considering the polynomial

x3 − 3x+ 2d = 0

Then

x =
3

√
−d+

√
d2 − 1 +

3

√
−d−

√
d2 − 1

These terms give a value of 1 when multiplied together. Let the first term be
p and the second one n. Additionally, the sum of the cubes of the terms gives
−2d. So

x3 = (p+ n)3 = p3 + n3 + 3p2n+ 3pn2 = −2d+ 3p+ 3n = −2d+ 3x

x3 − 3x+ 2d = 0 3

There is an extraordinary similarity with the square root denesting identity,
which operates by nearly the same principles:

√
x+
√
y =

√
x+

√
x2 − y
2

+

√
x−

√
x2 − y
2

One potential route to the cubic formula is to therefore replace the outer square
roots in the right hand side with cube roots, and then take the cube.
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4.1 Obsolete lines of inquiry

4.1.1 Other root relation strategies

An attempt was also made to use the root relation r3 = r2 + k, but this was
not pursued much further because the identity looked uglier than the ratio
version:

f31

(
±(1− k2)

√
12− 3k2

9

)
=
∓2
√

12− 3k2

6

f32

(
±(1− k2)

√
12− 3k2

9

)
=
−3k ±

√
12− 3k2

6

f33

(
±(1− k2)

√
12− 3k2

9

)
=

3k ±
√

12− 3k2

6

0 < k <
√

3

Additionally, during the root relation derivation, there was one other unpursued
path:

d =
k2 + k

(
√
k2 + k + 1)3

One can square d and add constants. But if this didn’t end up working, the
plan was to also add multiples of d, which results in a square root added in
the numerator. A square root is then placed around the entire expression. One
could then check if the square roots could be denested.

4.1.2 Cleaner root functions

The quadratic equation can be made cleaner if one uses ax2+2bx+c = 0:

x =
−b±

√
b2 − c
a

Going even further,

x2 + 2bx+ c2 = 0 =⇒ x = −b±
√
b2 − c2

We can analogously make the very depressed cubic cleaner by using x3−3x+d =
0 instead. The corresponding root function is denoted h3n(d). It was thought
this might make guessing the form easier.
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4.1.3 Reciprocal transform

The reciprocal transform:

1

fn(a, b, c, d)
= fm(d, c, b, a)

The root ordering is left undetermined. Unlike other transforms, this gives a
non-trivial identity for the very depressed root function.

1

f33(d)
=

1 +
√

3f3n

(
−2
√
3

9 + 3
√

3d2
)

3d

or, the cleaner varieties, with correctly determined root ordering

0 < d < 2 −2 < d < 0

1
h31(d)

= 1+h31(d
2−2)

d
1

h31(d)
= 1+h32(d

2−2)
d

1
h32(d)

= 1+h33(d
2−2)

d
1

h32(d)
= 1+h33(d

2−2)
d

1
h33(d)

= 1+h32(d
2−2)

d
1

h33(d)
= 1+h31(d

2−2)
d

It was hoped these would allow guessing the form of the formula, but that didn’t
work.
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