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1 Intro

The nth Taylor polynomial for a function f around c is given by

Pn(x) =

n∑
k=0

f (k)(c)(x− c)k

k!

The nth remainder term is the difference between the Taylor polynomial and
the function:

Rn(x) = f(x)− Pn(x)

The Lagrange form of the remainder gives a formula for the remainder:

Rn(x0) =
f (n+1)(λ)(x0 − c)n+1

(n+ 1)!

for some λ between x0 and c.

2 Intuition

Lemma 1. If a function is continous in an interval and never takes on a
certain value, then either it’s always less than that value in the interval, or
it’s always greater than that value. Rigorously, if a function f is continuous
in [a, b] and f(x) 6= h ∀x in [a, b] then either f(x) > h ∀x in [a, b] or
f(x) < h ∀x in [a, b]. I have a marvelous proof of this fact, but it is too
large to fit in this box.

Suppose we’re using a linear approximation of a function. We draw a line
tangent to the function at x = c. We want to find the remainder (error) at
x = x0. We can write this remainder term as a quadratic correction. So we
need to add a suitable acceleration to our linear approximation so that it passes
through f(x0). We will call this acceleration a. So we have that

R1(x) =
a(x− c)2

2
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f(x0) = f(c) + f ′(c)(x0 − c) +
a(x0 − c)2
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This clearly must work for some a. We could solve for it in this equation if we
knew the value of f(x0). Our claim is that the function’s acceleration equals a
at some x = λ.

Suppose, on the contrary, that it never took on this value. Since the function
is continuous, then by Lemma 1 the function’s acceleration either must always
be less than a or greater than a. In either case, the function having an acceler-
ation that is always greater or less than a would mean that the correction with
acceleration a would either undershoot or overshoot f(x0), respectively. This is
clearly a contradiction, so the function must have the acceleration somewhere.
We will generalize this idea.

3 Proof

For higher derivatives, our correction will be

Rn(x) =
r(x− c)n+1

(n+ 1)!
(1)

where r (“rate”) is the necessary (n+ 1)th derivative. So that

f(x0) = Pn(x0) +Rn(x0) (2)

where f is continuous in the interval [c, x0].
Suppose f (n+1) never takes on the value r between c and x0. By Lemma 1,

either f (n+1)(x) < r in this interval or f (n+1)(x) > r. We will prove that the
first case yields a contradiction. The proof of the second case is identical, but
with the less-than sign changed to a greater-than sign.

Lemma 2. If f(x) < g(x) ∀x in [a, b] then
∫ b

a
f(x) dx <

∫ b

a
g(x) dx. Same

for f(x) > g(x). The proof of this is left as an exercise to the reader.

f (n+1)(x) < r

2



By Lemma 2, ∫ x

c

f (n+1)(x) dx <

∫ x

c

r dx

f (n)(x)− f (n)(c) < r(x− c)∫ x

c

f (n)(x)− f (n)(c) dx <

∫ x

c

r(x− c) dx

f (n−1)(x)− f (n−1)(c)− f (n)(c)(x− c) < r(x− c)2

2

Integrating (n− 2) more times
...

f ′(x)−
n∑

k=1

f (k)(c)(x− c)k−1

(k − 1)!
<
r(x− c)n

n!∫ x0

c

f ′(x)−
n∑

k=1

f (k)(c)(x− c)k−1

(k − 1)!
dx <

∫ x0

c

r(x− c)n

n!
dx

f(x0)−
n∑

k=0

f (k)(c)(x0 − c)k

k!
<
r(x0 − c)n+1

(n+ 1)!

f(x0)− Pn(x0) < Rn(x0)

f(x0) < Pn(x0) +Rn(x0)

This contradicts (2). Once the greater-than case is also ruled out, then by
Lemma 1,

f (n+1)(λ) = r for some λ in [c, x0]

and by (1),

Rn(x0) =
f (n+1)(λ)(x0 − c)n+1

(n+ 1)!
for some λ in [c, x0]
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