Lagrange Remainder for Taylor Series

James Taylor

1 Intro

The nth Taylor polynomial for a function f around c is given by
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The nth remainder term is the difference between the Taylor polynomial and
the function:

R (x) = f(z) — Pu(z)
The Lagrange form of the remainder gives a formula for the remainder:
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Rn(l'o) =

for some A\ between xy and c.

2 Intuition

Lemma 1. If a function is continous in an interval and never takes on a
certain value, then either it’s always less than that value in the interval, or
it’s always greater than that value. Rigorously, if a function f is continuous
in [a,b] and f(x) # h Yz in [a,b] then either f(z) > h Yz in [a,b] or
f(x) < h Yz in[a,b]. I have a marvelous proof of this fact, but it is too
large to fit in this boz.

Suppose we're using a linear approximation of a function. We draw a line
tangent to the function at z = ¢. We want to find the remainder (error) at
r = xg. We can write this remainder term as a quadratic correction. So we
need to add a suitable acceleration to our linear approximation so that it passes
through f(z). We will call this acceleration a. So we have that

a(z —c)?
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This clearly must work for some a. We could solve for it in this equation if we
knew the value of f(xg). Our claim is that the function’s acceleration equals a
at some z = .

Suppose, on the contrary, that it never took on this value. Since the function
is continuous, then by Lemma 1 the function’s acceleration either must always
be less than a or greater than a. In either case, the function having an acceler-
ation that is always greater or less than a would mean that the correction with
acceleration a would either undershoot or overshoot f(xg), respectively. This is
clearly a contradiction, so the function must have the acceleration somewhere.
We will generalize this idea.

3 Proof
For higher derivatives, our correction will be
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where r (“rate”) is the necessary (n + 1)th derivative. So that
f(@o) = Pa(xo) + Rn(x0) (2)

where f is continuous in the interval [c, z¢].

Suppose f("*t1) never takes on the value r between ¢ and zy. By Lemma 1,
either f(»*1(z) < r in this interval or f(*V(z) > r. We will prove that the
first case yields a contradiction. The proof of the second case is identical, but
with the less-than sign changed to a greater-than sign.

Lemma 2. If f(z) < g(x) Yz in [a,b] then f:f(:r) dz < f;g(x) dz. Same
for f(x) > g(x). The proof of this is left as an exercise to the reader.
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By Lemma 2,
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Integrating (n — 2) more times : :
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f(@o) = kzzo i (1)
f(x0) — Pa(0) < Ry(20)
f(x0) < Pa(z0) + Ru(w0)

This contradicts (2). Once the greater-than case is also ruled out, then by
Lemma 1,
FOH(N) = 7 for some A in [, zo]

and by (1),
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R, (zg) = (n+ 1) for some A in [¢,x9] O




