Lagrange Remainder for Taylor Series

James Taylor

1 Intro

The nth Taylor polynomial for a function f around c is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^{k}}{k!}
$$

The nth remainder term is the difference between the Taylor polynomial and the function:

$$
R_{n}(x)=f(x)-P_{n}(x)
$$

The Lagrange form of the remainder gives a formula for the remainder:

$$
R_{n}\left(x_{0}\right)=\frac{f^{(n+1)}(\lambda)\left(x_{0}-c\right)^{n+1}}{(n+1)!}
$$

for some λ between x_{0} and c.

2 Intuition

Lemma 1. If a function is continous in an interval and never takes on a certain value, then either it's always less than that value in the interval, or it's always greater than that value. Rigorously, if a function f is continuous in $[a, b]$ and $f(x) \neq h \forall x$ in $[a, b]$ then either $f(x)>h \forall x$ in $[a, b]$ or $f(x)<h \forall x$ in $[a, b]$. I have a marvelous proof of this fact, but it is too large to fit in this box.

Suppose we're using a linear approximation of a function. We draw a line tangent to the function at $x=c$. We want to find the remainder (error) at $x=x_{0}$. We can write this remainder term as a quadratic correction. So we need to add a suitable acceleration to our linear approximation so that it passes through $f\left(x_{0}\right)$. We will call this acceleration a. So we have that

$$
R_{1}(x)=\frac{a(x-c)^{2}}{2}
$$

$$
f\left(x_{0}\right)=f(c)+f^{\prime}(c)\left(x_{0}-c\right)+\frac{a\left(x_{0}-c\right)^{2}}{2}
$$

This clearly must work for some a. We could solve for it in this equation if we knew the value of $f\left(x_{0}\right)$. Our claim is that the function's acceleration equals a at some $x=\lambda$.

Suppose, on the contrary, that it never took on this value. Since the function is continuous, then by Lemma 1 the function's acceleration either must always be less than a or greater than a. In either case, the function having an acceleration that is always greater or less than a would mean that the correction with acceleration a would either undershoot or overshoot $f\left(x_{0}\right)$, respectively. This is clearly a contradiction, so the function must have the acceleration somewhere. We will generalize this idea.

3 Proof

For higher derivatives, our correction will be

$$
\begin{equation*}
R_{n}(x)=\frac{r(x-c)^{n+1}}{(n+1)!} \tag{1}
\end{equation*}
$$

where r ("rate") is the necessary $(n+1)$ th derivative. So that

$$
\begin{equation*}
f\left(x_{0}\right)=P_{n}\left(x_{0}\right)+R_{n}\left(x_{0}\right) \tag{2}
\end{equation*}
$$

where f is continuous in the interval $\left[c, x_{0}\right]$.
Suppose $f^{(n+1)}$ never takes on the value r between c and x_{0}. By Lemma 1, either $f^{(n+1)}(x)<r$ in this interval or $f^{(n+1)}(x)>r$. We will prove that the first case yields a contradiction. The proof of the second case is identical, but with the less-than sign changed to a greater-than sign.

Lemma 2. If $f(x)<g(x) \forall x$ in $[a, b]$ then $\int_{a}^{b} f(x) \mathrm{d} x<\int_{a}^{b} g(x) \mathrm{d} x$. Same for $f(x)>g(x)$. The proof of this is left as an exercise to the reader.

$$
f^{(n+1)}(x)<r
$$

By Lemma 2,

$$
\begin{aligned}
\int_{c}^{x} f^{(n+1)}(x) \mathrm{d} x & <\int_{c}^{x} r \mathrm{~d} x \\
f^{(n)}(x)-f^{(n)}(c) & <r(x-c) \\
\int_{c}^{x} f^{(n)}(x)-f^{(n)}(c) \mathrm{d} x & <\int_{c}^{x} r(x-c) \mathrm{d} x \\
f^{(n-1)}(x)-f^{(n-1)}(c)-f^{(n)}(c)(x-c) & <\frac{r(x-c)^{2}}{2}
\end{aligned}
$$

Integrating $(n-2)$ more times \vdots

$$
f^{\prime}(x)-\sum_{k=1}^{n} \frac{f^{(k)}(c)(x-c)^{k-1}}{(k-1)!}<\frac{r(x-c)^{n}}{n!}
$$

$$
\int_{c}^{x_{0}} f^{\prime}(x)-\sum_{k=1}^{n} \frac{f^{(k)}(c)(x-c)^{k-1}}{(k-1)!} \mathrm{d} x<\int_{c}^{x_{0}} \frac{r(x-c)^{n}}{n!} \mathrm{d} x
$$

$$
f\left(x_{0}\right)-\sum_{k=0}^{n} \frac{f^{(k)}(c)\left(x_{0}-c\right)^{k}}{k!}<\frac{r\left(x_{0}-c\right)^{n+1}}{(n+1)!}
$$

$$
f\left(x_{0}\right)-P_{n}\left(x_{0}\right)<R_{n}\left(x_{0}\right)
$$

$$
f\left(x_{0}\right)<P_{n}\left(x_{0}\right)+R_{n}\left(x_{0}\right)
$$

This contradicts (2). Once the greater-than case is also ruled out, then by Lemma 1,

$$
f^{(n+1)}(\lambda)=r \text { for some } \lambda \text { in }\left[c, x_{0}\right]
$$

and by (1),

$$
R_{n}\left(x_{0}\right)=\frac{f^{(n+1)}(\lambda)\left(x_{0}-c\right)^{n+1}}{(n+1)!} \text { for some } \lambda \text { in }\left[c, x_{0}\right]
$$

